搜索资源列表
DataMining3rd
- 评测数据在去掉停用词的 分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高 1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题 -Evaluation data in the open test of the classification process to remove stop
Short-duration-power_CS
- 根据压缩传感(Compressed Sensing,cs)N论,首次提出了短时电能质量扰动信号的压缩采样方法,该方法突破了奈奎斯特采样频率的限制,实现了低于奈奎斯特采样频率的低速率采样。文中对比分析了CS理论与传统采样理论,研究了cS短时电能质量信号压缩采样的实现方法,包括:测量矩阵的构建、稀疏基的选取和电能质量信号快速贝叶斯匹配追踪重构算法(FBMP)-Compressed sensing ( Compressed Sensing , cs ) N theory , first propose
Image-reconstruction_CS
- 合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数- Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image recon
Modelling-Functional
- 相关向量机用于分类,可用于稀疏贝叶斯学习的研究,文章内含有RVM代码-Relevance vector machine for classification, can be used to study the sparse Bayesian learning, the article contains RVM code
Sparsity-Inducing-DOA
- 基于稀疏分解的宽带信号DOA估计方法,使用了基于贝叶斯的方法具有良好的估计精度和分辨率-Wideband signal sparse decomposition DOA estimation method based on the use of a method based on Bayesian estimation has good accuracy and resolution