搜索资源列表
PS101010
- 多为函数极小化程序 可以用来测试PSO优化函数-mostly function minimization procedures can be used to optimize the function tests PSO
PSOBPlunwen
- 基于PSO的BP训练算法论文:在BP训练算法中,关于变权值、学习速率、步长的问题已被广泛地研究,几种基于启发式改进的技术也表明具有改善训练时间以及避免陷入局部最小的明显效果。这里BP训练过程由基于PSO同时优化log—Sigmoid函数与网络权值的新算 法(PSO。GainBP)实现。实验结果表明,PSO—GainBP比传统基于PSO的BP算法在网络训练方面具有更好的性能。-PSO based on the BP training algorithm Papers: In the BP tr
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
5346363636
- :针对粒子群算法进行多极点函数优化时 存在的局部极小点和搜寻效率低的问题,引入了小 生境的思想到粒子群算法中,以粒子的最好位置为 中心,粒子的最好的个体解对应的适应值为半径建 立圆形小生境。stretching 技术,其次对子群体采用解散策略,即当在子群体中找到一个极值点后把子群体解散回归主群体,最 后设置子群体创建时的半径阈值,避免子群体半径过大。该算法解决了标准的NichePS0算法在处理 多峰函数时,极值点的个数依赖于子群体个数及极值点容易出现重复、遗漏
pso
- 子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。-Subgroup of particle swarm optimization algorithm is composed by a number of particles, each particle' s position represents to optimize the p
dsad
- :智能算法如粒子群算法已被应用于PID控制器的参数优化,以弥补传统优化方法容易产生振荡和较大超调量 的不足,但是粒子群算法存在易于早熟的缺点,在分析量子粒子群算法的基础上,提出了使用量子粒子群算法优化PID控 制器的参数。为了兼顾控制系统的各项性能指标,根据控制器的实际要求对各项指标进行加权作为算法的目标函数,对 PID控制器进行多目标寻优。通过2个传递函数实例,分别使用z—N、粒子群算法和量子粒子群算法进行了PID控制器 参数优化设计,并对结果进行了分析。-Abstract:H
gfsdgfsds
- :文中提出一种改进的Pso优化算法,并将该算法应 用于水轮发电机组PID调速器参数的优化设计,以水轮发 电机组转速偏差的ITAE指标作为改进PsO优化算法的适应 度函数。以我国某水电站的真实数据对经过优化后的PID 拄制规律进行计算机仿真。仿真结果表明利用改进Ps0优 化算法优化的PID控制规律能有效改善孤网运行条件下水 轮机调节系统过渡过程的动态性能。-An improved PSO algo—fhm wa‘presented and applicd to 叩tim
multifunction_optimization_use_pso
- 多峰值函数优化中,基本粒子群算法进化后期收敛速度较慢,提出一种具有可控速度因子的改进粒子群算法.-Multimodal function optimization, PSO late evolutionary convergence is slow, with a controllable speed improvements proposed particle swarm optimization factors.
Image-filter.tar
- 提出了一种基于改进 BP 神经网络和粒子群优化算法( PSO) 的图像滤波方法 。该方法利用双曲正切形式 的误差函数代替 BP 神经网络传统的最小均方误差函数( LMS),并将改进后的 BP 神经网络利用 PSO 算法优 化,用来减小图像噪声对神经网络精度的影响以及避免神经网络陷入局部极小值点,从而提高神经网络去噪能 力。实验结果表明,与传统滤波方法相比,该方法不仅能有效地滤除图像中的高斯噪声而且能很好地保护图像 细节 。- U63D0 u51FA u4E86 u4E00
粒子群优化算法
- 粒子群优化(PSO)是一种进化计算技术(进化计算)。 捕食鸟行为的研究。粒子群算法(PSO)的基本思想是通过群体中个体之间的协作和信息共享找到最优解。 粒子群优化算法的优点是它简单且易于实现,没有多个参数。目前,它已广泛应用于函数优化、神经网络训练、模糊系统控制等遗传算法中。(The particle swarm optimization (PSO:Particle swarm optimization) is an evolutionary computing technology (Ev
煤矿节能减排多目标优化研究
- 针对传统煤矿节能减排优化模型选取的目标函数比较单一的问题,构建了涵盖经济效益、能源消耗、污染物排放量等目标函数的煤矿节能减排多目标优化模型,并应用基于改进的蝙蝠算法寻找3个目标函数之间的优化解,实现了经济效益最大化、能源消耗最低化、污染物排放量最少化的优化结果。仿真结果表明,相比于PSO-E、NSGA-II算法,改进的蝙蝠算法能够在较短的迭代步数内获取较高的个体适应度,且能够实现较佳的多目标优化结果,符合节能规划的目标需求。(Aiming at the problem that the obje