搜索资源列表
-
5下载:
已有的聚类集算法基本上都是非监督聚类集成算法,这样不能利用已知信息,使得聚类集成的准确性、鲁棒性和稳定性降低.把半监督学习和聚类集成结合起来,设计半监督聚类集成模型来克服这些缺点.主要工作包括:第一,设计了基于贝叶斯网络的半监督聚类集成(semi-supervised cluster ensemble,简称SCE)模型,并对模型用变分法进行了推理求解;第二,在此基础上,给出了EM(expectation maximization)框架下的具体算法;第三,从UCI(University of Ca
-
-
0下载:
Expectation-Maximization
The EM (Expectation-Maximization) algorithm estimates the parameters of the multivariate probability density function in a form of the Gaussian mixture distribution with a specified number of mixtures.
-
-
1下载:
Source code - create Gaussian Mixture Model in following steps:
1, K-means
2, Expectation-Maxximization
3, GMM
Notice: All datapoints are generated randomly and you can config in Config.h-Source code- create Gaussian Mixture Model
-
-
0下载:
I present an expectation-maximization (EM) algorithm for principal
component analysis (PCA).
-
-
0下载:
It actually simulates the registration process of multiple dissimilar sensors in a wireless sensor network using the expectation maximization algorithm.
-
-
0下载:
Expectation-maximization algorithm
-
-
0下载:
Expectation-maximization algorithm
-
-
0下载:
Expectation-maximization algorithm
-
-
0下载:
文章展示了基于高斯混合模型的语音频谱预测方法。频谱预测可能在传包过程中预防丢包这方面起到大作用。期望最大化算法用两倍或三倍的连续语音因素来测试模型。模型被用来设计第一,儿等指令预测量。预测表用频谱分配状态来估计并和一个简单的参考模型对比。最好的预测表得到一个平均频率扭曲值是0.46dB小于参考模型-This paper presents methods for speech spectrum prediction based
on Gaussian mixture models. Spec
-
-
0下载:
Good tutorial for Expectation maximization algorithm
-
-
0下载:
In this paper, we propose a Bayesian methodology for
receiver function analysis, a key tool in determining the deep structure
of the Earth’s crust.We exploit the assumption of sparsity for
receiver functions to develop a Bayesian deconvolution
-
-
0下载:
Expectation maximization and mixture model tutorial
-
-
0下载:
We present a method to learn and recognize object class
models from unlabeled and unsegmented cluttered scenes
in a scale invariant manner. Objects are modeled as flexible
constellations of parts. A probabilistic representation is
used for al
-
-
0下载:
In data mining, k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean. This results in a partitioning of the data space into Vo
-
-
0下载:
This introduction to the expectation–maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs),
-
-
0下载:
这篇论文基于Kernel和Gaussian Mixture Model提出了一种新的误码率估计方法,使用Stochastic Expectation-Maximization算法实现误码率实时盲估计-This report presents a new Bit Error Rate estimation method based on Kernel and Gaussian Mixture Model, the method utilizes Stochastic Expectation-Max
-
-
0下载:
机器学习十大算法之一:EM算法。能评得上十大之一,让人听起来觉得挺NB的。什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题。神为什么是神,因为神能做很多人做不了的事。那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光-Expectation Maximization Algorithm
-
-
0下载:
实验报告,实现:对于混合高斯分布的情况,使用最大期望算法,通过不断计算每个样本的均值与方差,使得似然函数达到最大值。可以很好地处理满足一定概率分布的数据。
代码中通过mvnrnd()函数,设定其中的参数,产生符合混合高斯分布的一组数据集。-Lab reports, to achieve: the case of the mixed Gaussian distribution, using expectation-maximization algorithm, through continuo
-
-
2下载:
EM 算法是求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据、截尾数据以及带有噪声等所谓的不完全数据,可以具体来说,我们可以利用EM算法来填充样本中的缺失数据、发现隐藏变量的值、估计HMM中的参数、估计有限混合分布中的参数以及可以进行无监督聚类等等。-Expectation Maximization image segmentation
Input:
ima: gr
-
-
0下载:
aply maximum likelihood expectation maximization
-