搜索资源列表
课程设计指导书
- 课程设计是单片机课程教学的最后一个环节,是对学生进行全面的系统的训练。进行课程设计可以让学生把学过的比较零碎的知识系统化,真正的能够把学过的知识落到实处,能够开发简单的系统,也进一步激发了学生再深一步学习的热情,因此课程设计是必不少的,是非常必要的。 但是,在多年的教学实践中,我们感到一方面学生掌握的理论知识和实践知识有限;另一方面课程设计的时间有限,一般不多于两周。要想学生在规定时间内,运用自己有限的知识去独立完成一个单片机应用系统的全部设计、制作和调试是不现实的。在两周的时间内,学
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的
粗糙集
- 采用某股份制银行的698 家贷款企业样本, 基于粗糙集-Elman 神经网络集成构建了贷款企业五 级分类评估模型.该模型首先应用粗糙集理论约简出重要指标体系, 然后将训练样本送入Elman 神经网 络进行学习和训练, 进而对检验样本的风险等级进行判别.结果表明, 与传统的logistic 回归模型相比, 粗 糙集-神经网络系统对检验样本预测精度更高, 是一种更为有效和实用的分类方法, 为我国商业银行五 级分类管理提供一个新的方法. 关键词: 粗糙集;Elman 神经网络
基于深度学习的机器人抓取仿真训练技术研究
- 机器人智能抓取是实现机器人智能化的重要一环。由于待抓取物品形状、尺度的多样性以及环境因素的影响,抓取任务很难用准确的数学公式求解。以往的研究多是借助计算机视觉、机器学习等相关技术,虽有一定的效果,但智能化程度还是较低。2012 年后深度学习技术逐渐崛起,因为其良好的特征提取表现被应用在了各个领域,如医学图像、自动驾驶、数据分析等,近年来国外学者开始将这项技术应用到机器人抓取,并取得了一定的成果。