搜索资源列表
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
5346363636
- :针对粒子群算法进行多极点函数优化时 存在的局部极小点和搜寻效率低的问题,引入了小 生境的思想到粒子群算法中,以粒子的最好位置为 中心,粒子的最好的个体解对应的适应值为半径建 立圆形小生境。stretching 技术,其次对子群体采用解散策略,即当在子群体中找到一个极值点后把子群体解散回归主群体,最 后设置子群体创建时的半径阈值,避免子群体半径过大。该算法解决了标准的NichePS0算法在处理 多峰函数时,极值点的个数依赖于子群体个数及极值点容易出现重复、遗漏
PSO_neutest
- 使用MATLAB软件实现改进的粒子群寻优的算法。-Using MATLAB software improved particle swarm optimization algorithm.
Particle-Swarm-Optimization
- 粒子群算法在仿真生物群体社会活动的基础上,通过模拟群体生物 相互协同寻优能力,从而构造出一种新的智能优化算法。但粒子群算法 本身来源于生物群体现象,其理论基础并不完备。而且由于其属于随机 的近似优化算法,主要应用于连续区域,因此该算法存在早熟收敛和对 离散性的问题难以应用的缺点。因此,对粒子群算法的理论分析、算法 改进及离散性问题的研究具有重要意义的 -The Research of Basic Theory and Improvement on Particle Swa