搜索资源列表
knn
- 朴素贝叶斯(Naive Bayes, NB)算法是机器学习领域中常用的一种基于概率的分类算法,非常简单有效。k近邻法(k-Nearest Neighbor, kNN)[30,31]又称为基于实例(Example-based, Instance-bases)的算法,其基本思想相当直观:Rocchio法来源于信息检索系统,后来最早由Hull在1994年应用于分类[74],从那以后,Rocchio方法就在文本分类中广泛应用起来。
DCT
- 提出了一种基于DCT提取人脸特征技术和支持向量机分类模型的人脸识别方法。利用离 散余弦变换可提取人脸可识别的大部分信息,而支持向量机作为分类器,在处理小样本、高维数等 方面具有独特的优势,且泛化能力很强,无需先验知识。从ORL 人脸库上的实验结果可以看出, DCT特征提取是很有效的,且SVM的分类性能优于最近邻分类器,同时提高了整个系统的运算速 度。-A face recognition method based on DCT for face feature extractio
K-nearest-neighbor-algorithm
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法,讲解详细,非常有用-From K neighbor algorithm and distance measurement when it comes to KD tree, SIFT+ BBF algorithm, explain in detail, very useful
LSH
- 用LSH算法实现近似最近邻检索,并提高了效率-With LSH algorithm approximate nearest neighbor search, and improves efficiency
dynamic-region-merging
- In the proposed algorithm, these two issues are solved by a novel predicate, which is defined by the sequential probability ratio test (SPRT) and the minimal cost criterion. Starting from an over-segmented image, neighboring regions are progressivel
Classification-1
- Nearest Neighbor Classification
data-asso--introduction
- 详细介绍数据关联的相关知识,包含最近邻,JPDA的算法的详细推导。-Detailed data related knowledge, including the nearest neighbor, detailed derivation JPDA algorithm.
25292626
- 为了实现复杂环境下的人脸特征有效表达,提出一种改进的梯度方向直方图(HOG)人脸识别方法.首先以人脸图像网格作为采样窗口并在其上提取 HOG特征;然后将所有网格 HOG特征向量进行组合,实现整个人脸特 征表达;最后采用最近邻分类器进行识别.另外,比较了该方法与Gabor小波和局部二值模式(LBP)2种著名的人脸 局部特征表示方法的优劣.实验结果表明,在调优的 HOG参数下,在具有光照和时间环境等复杂变化的FERET人 脸库中,较少维数的 HOG特征比LBP特征有更好的表现,而且 HO
Traveling-Salesman-Problem---Nearest-Neighbor
- Nearest Neighbour algorithm for a TSP with 7 cities. The solution changes as the starting point is changed The nearest neighbour (NN) algorithm (a greedy algorithm) lets the salesperson choose the nearest unvisited city as his next move. This algor