搜索资源列表
ReliefTest.rar
- reliefF特征选择算法使用c语言实现的,reliefF feature selection algorithm to achieve the use of c language
FeatureSelection
- Feature Selection using Matlab. The DEMO includes 5 feature selection algorithms: • Sequential Forward Selection (SFS) • Sequential Floating Forward Selection (SFFS) • Sequential Backward Selection (SBS) • Se
basic_PSO_with_w_c
- 带有收缩因子和惯性权重的基本PSO粒子群算法源代码。本源代码模块化编写,结构清晰,便于改进和做数值实验-With contraction factor and inertia weight PSO basic particle swarm algorithm source code. Source code modular preparation, structure, clear, easy to improve and to do numerical experiments
reliefF
- reliefF algorithm for gene selection
feature_selection
- MRMR和relieff特征选择方法,很经典的,简单易用!-The the MRMR and the relieff feature selection method, very classic, simple and easy to use!
reliefF
- reliefF源码 用法及说明 简单易懂的-reliefF source usage, and easy to understand instructions
thesis
- relieff算法一种加权值,选择重要属性-relieff algorithm
code-of-reliefF-algrithm
- 给出了reliefF算法的matlab源代码,该算法用于处理目标属性为连续值的回归问题。是由relief算法拓展所得,可以处理多类别问题。-ReliefF algorithm matlab source code is given, and the algorithm is used for processing target attribute is continuous values of regression problems.By expanding income relief algo
code-Feature-Selection-using-Matlab
- 主要完成图像特征出提取,包括5个特征选择算法:SFS,SBS,SFBS-Descr iption The DEMO includes 5 feature selection algorithms: Sequential Forward Selection (SFS) Sequential Floating Forward Selection (SFFS) Sequential Backward Selection (SBS) Sequential Floating Bac
fsReliefF
- 著名的ReliefF特征过滤算法源代码,可用于模式识别-The famous ReliefF feature filtering algorithm source code, can be used for pattern recognition
featureselection
- 使用MATLAB,ReliefF算法应用于特征提取,适用于shp属性数据。-Using MATLAB, the ReliefF algorithm is applied to feature extraction and is suitable for SHP attribute data.
ReliefF-2
- 由于Relief算法比较简单,运行效率高,并且结果也比较令人满意,因此得到广泛应用,但是其局限性在于只能处理两类别数据,因此1994年Kononeill对其进行了扩展,得到了ReliefF作算法,可以处理多类别问题。该算法用于处理目标属性为连续值的回归问题。-Because Relief algorithm is relatively simple, high efficiency, and the results are more satisfactory, so widely used, b
fs_sup_relieff
- Relief算法中特征和类别的相关性是基于特征对近距离样本的区分能力。算法从训练集D中选择一个样本R,然后从和R同类的样本中寻找最近邻样本H,称为Near Hit,从和R不同类的样本中寻找最近样本M,称为Near Miss,根据以下规则更新每个特征的权重: 如果R和Near Hit在某个特征上的距离小于R和Near Miss上的距离,则说明该特征对区分同类和不同类的最近邻是有益的,则增加该特征的权重;反之,如果R和Near Hit在某个特征上的距离大于R和Near Miss上的距离,则说明该特
feature-selection-master
- 最小冗余最大相关性(MRMR)(MRMR.M) 需要外部库。详情请见MRMR。下载一个更新版本的互信息工具箱 偏最小二乘(PLS)回归系数(ReGCOEF.m) 使用MATLAB统计工具箱中的PLSReress ReliefF(分类)和RReliefF(回归)(ReleFracePr.M.) 从Matlab STATS工具箱中包装Releff.m。这是Matlab R2010B以后提供的。 ReliefF的另一个选择是使用ASU特征选择工具箱中的代码。这使用WEKA
Relieff特征选择算法
- Relieff特征选择算法,用于特征降维,选择权重比高的的特征。