资源列表
神经网络与深度学习
- 神经网络与深度学习 免费电子书 ,全高清,免费下载(Neural network and deep learning, full HD, free download)
Baidu Apollo EM Motion Planner
- 自动驾驶决策仿真,一种自动驾驶路径规划的方法(auto driver matlab simulink)
simulink
- 利用Matlab/simulink搭建纯电动汽车底盘模型,仿真其底盘控制性能。(Using Matlab / Simulink to build a pure electric vehicle chassis model and simulate its chassis control performance.)
lstm_tensorflow
- tensorflow2.0的Lstm实现(LSTM implementation of tensorflow 2.0)
DE算法matlab程序
- matlab的基本差分进化算法,放在了压缩包中的word里面(The basic differential evolution algorithm of MATLAB is put in the word in the compressed package)
涡旋光束全息与拓扑荷模拟程序
- 利用理论推导的方法,该matlab程序得出涡旋光束经相位全息光栅接收后一阶衍射光束的解析表达式。(By using the method of theoretical derivation, the analytical expression of the first-order diffraction beam of vortex beam received by phase holographic grating is obtained by MATLAB program.)
点云数据读取与操作
- 这是基于matlab平台实现的三维点云数据读取与显示,以及相应的操作。非常适合初学者学习,强烈推荐(This is based on the MATLAB platform to achieve the three-dimensional point cloud data reading and display, as well as the corresponding operation. Very suitable for beginners, highly recommended)
MATLABB
- MATLAB绘制栅格化地图 %创建具有障碍物的栅格地图 %矩阵中0代表黑色栅格 a = ones(20); a(3,3:7)=0; a(3:10,7)=0; a(10,3:7)=0; a(17,13:17)=0; a(10:17,13)=0; a(10,13:17)=0; a(14,15)=0; b = a; %disp(a(end,end)); b(end+1,end+1) = 0; %disp(b); colormap([0 0 0;1 1 1]); % 创建颜色 %disp(size
apso33
- apso求解电力系统经济调度问题,可以得到每个机组的出力,并且含有多个约束条件(APSO can solve the economic dispatch problem of power system and get the output of each unit, which contains many constraints)
小波变换
- 做地震数据处理的去噪程序,通过原始信号,加噪声的信号,以及小波变换的信号进行比较分析,并生成图像。(Do the denoising program of seismic data processing, compare and analyze the original signal, noise signal and wavelet transform signal, and generate the image.)
熵值法
- 此压缩文件里面包含面板数据熵值法的stata代码,每一步都有详细的解释,并且附有样本和数据,方便学者理解和掌握。(This compressed file contains the stat a code of panel data entropy method, each step has a detailed explanation, and is attached with samples and data, which is convenient for scholars to unde
beiBao01
- 免疫克隆解决01背包问题,将免疫概念及其理论应用于遗传算法,在保留原算法优良特性的前提下,力图有选择、有目的地利用待求问题中的一些特征信息或知识来抑制其优化过程中出现的退化现象,这种算法称为免疫算法(Immune Algorithm) IA。人工免疫算法是一种具有生成+检测 (generate and test)的迭代过程的群智能搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,免疫算法是全局收敛的。(Immune clone solves 01 knapsack problem