资源列表
chepai
- 基于BP神经网络模型的车牌识别,利用opecv库函数,vc++编程实现-Based on the BP neural network model of the license plate identification
deep-learning-opencv
- opencv3.3以上的版本调用caffe模型提前训练好的模型进行图片识别。(The above version of opencv3.3 calls the Caffe model in advance training model for image recognition.)
Matlab数据分析与挖掘实战1-8
- Matlab code for data mining and some samples for easy usage!!!
adaptive-control
- 自适应的控制理论及应用,系统知识讲解与使用-adaptive control theory and appliation
CWSS17.1.1.4
- 基于隐马尔科夫模型的中文分词系统,上交ieee专业大一作业,界面一般,主要用于学习,在此分享,注:开发环境python3.5(Based on Hidden Markov model of Chinese word segmentation system, on the IEEE professional freshman job, interface is common, mainly used for learning, in this share, note: development en
fuzzy-PID
- 985高校的一些博士论文,关于模糊PID,及一些智能控制算法,希望对大家有用啦!-BeeausetheearlyfuzzyPDandfuzzyPlfuzzycontrollersexist theflawsthenewPIDfuzzycontrollerseontinuouslyProPosed,to unifywiththestruetureanalysisandthestabilityanalysisbeeame toane
Deep Learning Papers Reading Roadmap
- 这是一些关于深度学习的基础资料,希望对一些初学者有帮助!(These are some basic materials about deep learning, hope they are helpful to beginners!)
机器学习实战(中文,英文原版及源码)
- 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存、谋发展的决定性手段,这使得这一过去为分析师和数学家所专属的研究领域越来越为人们所瞩目。(Machine learning is a very important research direction in the research field of artificial intelligence, big data in the background, infor
DocDistance
- java实现的文本相似度系统,使用向量空间模型以及余弦相似度距离公式,实测可以实现2篇文本的相似度计算且有一定的效果。-Java text similarity system, using the vector space model and the cosine similarity distance formula, the measured results can be achieved two similarity of text and have some effect.
vcdigita-image-patten-
- 本书介绍了模式识别和人工智能中的一些基本理论以及一些相关的模型,包括贝叶斯决策、线性判别函数、神经网络理论、隐马尔可夫模型、聚类技术等-This book describes the pattern recognition and artificial intelligence in some of the basic theory and some related models, including Bayesian decision-making, linear discriminant f
lisa-caffe-public-lstm_video_deploy
- 深度学习,循环神经网络LSTM,常用于语音识别,翻译,预测等(Deep learning, recurrent neural network LSTM)
机器学习实践指南代码及资源
- 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。(Machine Learning (ML) is a multi domain cross discipline, involving