资源列表
gSpan6.tar
- 频繁子图挖掘算法,非常经典,值得学习一下。-subgraph mining
Bayesian-networks-for-Data-Mining
- 贝叶斯网络的介绍及其在数据挖掘和模式识别中的应用-Introduction Bayesian network and its application in data mining and pattern recognition
KMeans
- 数据聚类算法 kmeans 算法 ,使用MATLAB实现,文中的代码注释为中文,更易于实现-data mining algorithm , clustering algorithm , k_means algorithm
kmeansPP
- kmeans 算法的改进算法 名字为kmeans++算法,参考的文献为 kmeans++: an efficient algorithm。。。。算法他人所写,这里上传,以方便同行传阅-this is a algorithm named k_means++. reference the paper : an efficient algorithm ...
pujulei
- 谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。 该算法首先根据给定的样本数据集定义一个描述成对数据点相似度的亲合矩阵,并且计算矩阵的特征值和特征向量 , 然后选择合适 的特征向量聚类不同的数据点。谱聚类算法最初用于计算机视觉 、VLS I 设计等领域, 最近才开始用于机器学习中,并迅速成为国际上机器学习领域的研究热点。-Spectral clustering algorithm based on the spectrum b
best_kmeans
- 该算法克服了kmeans算法需要手动设置k值得缺陷,使用多次迭代,可以自动得到合适的k值,并进行聚类计算。该算法不是本人所写,这里上传供同行传阅。http://www.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans-x--this program is come form the link:http://www.mathworks.com/matlabcentral/fileexchange/49489-best-kmeans
k_clique
- [X,Y,Z] = k_clique(k,A) Inputs: k - clique size A - adjacency matrix Outputs: X - detected communities Y - all cliques (i.e. complete subgraphs that are not parts of larger complete subgraphs) Z - k-clique matrix-k-clique alg
OPTICS-algorithm
- optics 算法作为基于密度的聚类算法的一种重要的改进,十分有借鉴的意义。-Called algorithm for clustering algorithm based on density is an important improvement, very have reference significance.
Regression
- 6 matlab file about regression. mathematical theory of regression implemented in matlab software.
Regressionmath
- 6 matlab file about regression. mathematical theory of regression implemented in matlab software.
k
- k mean algorithm implementation using random cluster centroid
FP-and-apriori-code
- FP和Apriori算法实现,Java代码,myeclipse下可直接使用!-FP and Apriori algorithm, under the Java code, myeclipse can be used directly!