资源列表
python疫情数据可视化
- 通过时事数据可视化系统,可以清楚地了解全球疫情分布的状况以及密度,以便做出相应的对策(Through the current affairs data visualization system, it is possible to clearly understand the distribution and density of the global epidemic in order to make corresponding countermeasures)
ELM_样例
- 极限学习机(Extreme Learning Machine, ELM)用来训练单隐藏层前馈神经网络(SLFN)与传统的SLFN训练算法不同,极限学习机随机选取输入层权重和隐藏层偏置,输出层权重通过激活函数函数,依据Moore-Penrose(MP)广义逆矩阵理论计算解析求出。(Extreme learning machine (ELM) is used to train single hidden layer feedforward neural network (SLFN). Differe
PCA+mnist
- 基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。 经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set. After PCA dime
sougou
- 网络爬虫,输入关键词和页数,自动下载搜狗图库图片(Input keywords and pages, automatically download the picture of Sogou library)
豆瓣
- 使用爬虫从豆瓣官网获得影评TOP250的电影,以Excel文件的形式存储在本地。(Use the crawler to get the top 250 movie reviews from Douban official website and store them locally as Excel files.)
Decision_tree-python
- 使用决策树(包括ID3,C45,CART)对数据做多分类预测。(Use Decision Tree to classify.)
数据挖掘导论 完整版
- 讲解数据挖掘中用到的基本算法,描述了算法的数学原理,以及实际应用(Explain the basic algorithm used in data mining, describe the mathematical principle of the algorithm, and practical application)
KNN01
- 用来作分类识别的KNN算法,非常好用非常好用(A very useful nearest neighbor algorithm)
07 RFM建模实战
- 1、通过Python的Pandas库实现客户价值分层的RFM模型; 2、提供源数据(1. Through Python pandas library, the RFM model of customer value stratification is realized; 2. Provide source data)
Python数据分析与挖掘实战
- 本书共15章,分两个部分:基础篇、实战篇。基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关知识与理论。(There are 15 chapters in this book, which are divided into two parts: the basic c
nlp7294
- 22w条打好标签的数据,供短文本主题分类使用(22W labeled data for short text topic classification)
降维code
- 了解降维、特征筛选等基本原理 掌握PCA、SVD、LAD和NMF等算法实现及应用(Understand the basic principles of dimensionality reduction and feature selection Master the algorithm implementation and application of PCA, SVD, lad and NMF)