搜索资源列表
BlindEqualizer
- Blind Equalizer 的演算法主要是利用CMA及 LMS 的配合,当CMA将EYE打开,使讯号趋近于正确值,就切换到LMS,利用Slicer的输出当作training sequence来调整Equalizer的系数,而Carrier Recovery 的部份,则是将phase error track出来-Blind Equalizer algorithm is the use of the CMA and LMS tie, When the CMA will EYE open, sig
r
- 序列的自相关函数和负相关函数的计算,设计维纳滤波器,写出维纳-霍甫方程,用矩阵方法求解该方程,得到滤波器冲激响应,并计算最小均方误差-Calculation of the autocorrelation function and a negative correlation function of the sequence, the Wiener filter design, write Wiener- Huo Fu equation, using the matrix method to so
pro_2
- 用局部参数最优化方法设计一个模型参考自适应系统,可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A×1(t)。 要求: 1把连续系统离散化(采样时间可取0.1)。 2编制并运行这个系统的计算机程序(注意调整B值,使系统获得较好的自适应特性)。 3记录ym、yp的曲线 记录kp×kc的曲线 记录广义输出误差e的变化曲线。 4在参数收敛后,让Kp=2变为Kp=1,重新观察Kp×Kc及e的变化曲线。 5找出在确定的B值下,使系统不稳定的A值(阶跃信号
M=162
- 一维边值为0的微分方程,有限元方法逼近问题的解,给出误差的lebesgue模估计和能量估计。copy到命令窗口里运行即可。-solove one dimension ODE in FEM,and give error estimate
nlpf
- This simple Matlab function simulates a innovative algorithm for narrow band interference mitigation for wireless communications, esp for satellite comm. The algorithm looks similar to LMS, but error is non-linearly transformed. It works well and a
ssim
- This is an implementation of the algorithm for calculating the Structural SIMilarity (SSIM) index between two images. Please refer to the following paper: Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assess
fit_ML_laplace
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!. Given the samples of a laplace distribution, the PDF parameter is found fits data to the probability of the form: p(x) = 1/(2*b)*exp(-abs(x-u)/b)
fit_ML_log_normal
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!. Given the samples of a laplace distribution, the PDF parameter is found fits data to the probability of the form: p(x) = 1/(2*b)*exp(-abs(x-u)/b)
fit_ML_maxwell
- fit_ML_normal - Maximum Likelihood fit of the log-normal distribution of i.i.d. samples!. Given the samples of a log-normal distribution, the PDF parameter is found fits data to the probability of the form: p(x) = sqrt(1/(2*pi))/(s*x)*
fit_ML_normal
- fit_ML_normal - Maximum Likelihood fit of the normal distribution of i.i.d. samples!. Given the samples of a normal distribution, the PDF parameter is found fits data to the probability of the form: p(r) = sqrt(1/2/pi/sig^2)*exp(-((r-u
fit_ML_rayleigh
- fit_ML_rayleigh - Maximum Likelihood fit of the rayleigh distribution of i.i.d. samples!. Given the samples of a rayleigh distribution, the PDF parameter is found fits data to the probability of the form: p(r)=r*exp(-r^2/(2*s))/s wit
BessDerivZerosBisect2
- 计算了贝塞尔函数的一阶导数的零点。 更新BessDerivZerosBisect.m这些变化: 1。允许对m= 0 2。允许用户指定特定的m和k值理想。 3。允许公差输入参数 4。使用一个表的查找能为m和k的小值接近初始化 5。添加错误检查 6。计算衍生w.r.t.以X而不是w.r.t.米(虽然老方法的工作也。)-Calculates the zeros of the first derivatives of Bessel function. Updates B
matlab
- 仿真程序:首先需要用一个随机发生器产生(0.1)内的均匀随机数,然后再将该序列映射到对应的幅度电平{Am}。然后将这个范围再分成4个相等的区间,这些子区间分别对应于4个信号比特的符号00,01,10,11。检测器观察到r=Am+n,并且计算r和4种可能传输的信号幅度之间的距离,它的输出Bm就是相应于最小距离的信号电平。Bm与真正的的传输信号幅度比较,差错计数器用来对检测器产生的差错计数。-Simulation program: first need to use a random genera
Matlab-simulation-DF-and-AF-source
- 该程序是使用Matlab仿真协同通信的DF(解码转发)基本性能,基本模型S-R-D三个节点,接收端使用MRC(最大比合并)。固定DF由于SR信道的错误,其性能受到限制,在大SNR情况下不能获得有效分集。而当SR距离足够近的时候,可能获得一定的分集增益。-The program is a cooperative communication using Matlab simulation DF (decode forwarding) basic performance, the basic mode
BerMass
- The example below encodes one message words using Reed-Solomon encoder. It then corrupts the code by introducing two errors in the codeword, Then BerMass tries to the connection weight vector A and its roots R that it used to know error location.
DFAF
- 该程序是使用Matlab仿真协同通信的DF(解码转发)基本性能,基本模型S-R-D三个节点,接收端使用MRC(最大比合并)。固定DF由于SR信道的错误,其性能受到限制,在大SNR情况下不能获得有效分集。而当SR距离足够近的时候,可能获得一定的分集增益-The program is a cooperative communication using Matlab simulation DF (decode forwarding) basic performance, the basic mode
Bit-error-probability-curve-for-BPSK-modulation.r
- Bit error probability curve for BPSK modulation
RDPTA
- Algorithm Given are P training pairs {X1,d1,X2,d2....Xp,dp}, where Xi is (n*1) di is (n*1) No of Categories=R. i=1,2,...P Yi= Augmented input pattern( obtained by appending 1 to the input vector) i=1,2,…P In the following, k denotes the training step
ekf
- 从空中水平抛射出的物体,初始水平速度Vx(0),初始位置坐标(x(0),y(0));受重力g和阻尼力影响,阻尼力与速度平方成正比,水平和垂直阻尼系数分别为Kx,Ky,;还存在不确定的零均值白噪声干扰力xa和ya。在坐标原点处有一观测设备(不妨想象成雷达),可测得距离r(零均值白噪声误差r)、角度(零均值白噪声误差),使用扩展卡尔曼滤波进行仿真。-The level of throwing objects the air, the speed of the initial level of Vx
MATLAB
- 利用matlab程序,进行曲线拟合,并返回误差R值(Matlab program, curve fitting, and return error R value)