搜索资源列表
4
- 本文主要研究海面运动船只的识别与跟踪技术。首先概述了海上运动目标检测和跟踪的研究现状;对目前主要的显著区域提取、运动目标识别和跟踪方法进行了简要概述;提出了基于视觉注意和HOG特征相融合的海上船只目标检测方法;利用多特征融合的粒子滤波算法对运动目标进行了跟踪。-This paper studies the sea sport vessel identification and tracking technology. First, an overview of maritime moving t
ZTSBSVM
- 算法提出了 一个新的部位观测模型和一种新的减小部位状态空间的方法:(1)对人体不同部位采用不同尺寸的细胞单元计算HOG特 征,并利用线性SVM进行分类,从而提出一种新的部位观测模型;(2)利用人体部位定位的先验分布确定部位定位区域,然 后通过邻域归并和设置与部位模板的匹配度阈值进一步减小状态空间,从而提出了一种减小部位状态空间的方法。仿真 实验结果表明所提算法与传统算法相比更加有效。-Algorithm proposed site of a new observation mod
25292626
- 为了实现复杂环境下的人脸特征有效表达,提出一种改进的梯度方向直方图(HOG)人脸识别方法.首先以人脸图像网格作为采样窗口并在其上提取 HOG特征;然后将所有网格 HOG特征向量进行组合,实现整个人脸特 征表达;最后采用最近邻分类器进行识别.另外,比较了该方法与Gabor小波和局部二值模式(LBP)2种著名的人脸 局部特征表示方法的优劣.实验结果表明,在调优的 HOG参数下,在具有光照和时间环境等复杂变化的FERET人 脸库中,较少维数的 HOG特征比LBP特征有更好的表现,而且 HO
HogPSVM-Pedestrian-Detection-
- 保证可用的,希望好评!!!HOG+SVM进行图片中行人检测,提供训练用的pos和neg样本,效果还可以(也是本网站下载代码,但是原始的作者故意改错一些地方,我已经一一修正,完全可以运行;没有SVM工具箱的,压缩包里已经提供了,安装一下即可) -HOG+SVM pedestrian detection
SVM
- Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法。后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架。因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中。在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenCV1.0版本就已经集成进去了;OpenCV虽然提供了Hog和SVM的API,也提供了行人检测的sample,遗憾的是,OpenCV并没有提供样本训练的sample。这也就意味着,很多人只能用Ope
ImageClassification-master
- 在这个项目中,我们的目标是建立一个识别和大小231x231图像呈现对象分类系统。我们得到了一组训练图像,每四个标签之一:1飞机;汽车2;3马,否则。我们提供了两个特点:一是方向梯度直方图(HOG),其尺寸为5408;另一个是overfeat ImageNet美国有线电视新闻网的特点,其尺寸37000。关于测试图像,我们只给出了每个图像的功能,没有标签,结果判断由平地机。我们的目标是提供二进制和多个预测。平衡错误率(BER)是我们的性能评估。为了解决这个问题,我们首先减少PCA的问题的维数,处理不
ImgHOGFeature
- HOG特征计算,(1)将输入的彩图转换为灰度图; (2)采用Gamma校*对输入图像进行颜色空间的标准化(归一化);目的是调节图像的对比度,降低图像局部的阴影和光照变化所造成的影响,同时可以抑制噪音的干扰; (3)计算梯度;主要是为了捕获轮廓信息,同时进一步弱化光照的干扰。 (4)将梯度投影到单元的梯度方向;目的是为局部图像区域提供一个编码, (5)将所有单元格在块上进行归一化;归一化能够更进一步对光照、阴影和边缘进行压缩,通常,每个单元格由多个不同的块共享,但它的归一化是基于不同块的
animal
- 代码包含训练和检测两个部分;使用的方法是hog特征加支撑向量机;能实现猫狗羊马的检测(The code contains two parts of training and testing; using hog features and support vector machine; detection can achieve Gouyang horse cat)
HOGCompute
- 根据2005年Dalal提出HOG特征计算原理,自己编写了HOG特征提取算法,此特征可以用于目标检测中,包括行人检测,采用编程语言为C++,采用视觉库为opencv(According to the principle of HOG feature calculation proposed by Dalal in 2005, HOG feature extraction algorithm has been compiled. This feature can be used in object
利用Hog特征和SVM分类器进行行人检测
- 利用Hog特征和SVM分类器进行行人检测(Using Hog features and SVM classifiers for pedestrian detection)
da
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类器;SVM本身就是(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haa
fa(4)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程)(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast
ga (6)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based
gmm(2)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaBoost and hog based SVM Classifier + fast Hough circle trans
rq(3)
- 基于码本(codebook)的背景建模的背景差分法+级联基于LBK或haar的adaboost和基于hog的svm分类器+快速hough圆变换进行人头识别+基于区域特征的目标跟踪算法。(编程) AdaBoost是一种增强性机器学习算法,它用于把弱分类器联合成强分类分类器(Background modeling based on codebook (codebook) background difference method + cascade based on LBK or Haar AdaB
HOG+SVM进行图片中行人检测
- 行人检测HOG+SVM进行图片中行人检测,提供训练用的pos和neg样本,效果还可以;没有SVM工具箱的,压缩包里已经提供了,安装一下即可(Pedestrian detection HOG + SVM for pedestrian detection in pictures, providing POS and neg samples for training, the effect is good; without SVM toolbox, the compression package ha