资源列表
svm_toolbox
- 基于matlab的支持向量机应用于数据预测分析的代码-Matlab-based support vector machine applied to the analysis of the code data to predict
A-star
- 典型的A*算法,是VC控制台应用程序,可以帮助读者理解A*的基本流程-The typical A* algorithm VC console application that can help the reader understand the basic processes of the A*
LMS_NLMS_RLS
- LMS算法和NLMS算法以及RLS算法演示程序-Lest Mean Square (LMS) Algorithm Recursive Least Square (RLS) Algorithm Normalized LMS (NLMS) Algorithm Demo
RBF
- 此为径向基资料,,对RBF神经网络的结构和原理进行了详细的说明,,对RBF编程很有帮助-This is the radial basis information on the RBF neural network structure and principle of the detailed descr iption of RBF programming helpful
ECG
- 对心电信号进行低通滤波去干扰,去除基线漂移。(The ECG signal is filtered to eliminate interference and baseline wander is removed.)
chap2
- 三个有趣的算法问题,包括金刚坐飞机问题,烙饼问题,饮料供货问题,非常适合算法学习者-Three interesting algorithms, including King Kong by plane problem, the problem pancakes, drink supply issue is very suitable algorithm for learners
1709.04326
- 多智能体设置在机器学习中的重要性日益突出。超过了最近的大量关于深度的工作多agent强化学习,层次强化学习,生成对抗网络和分散优化都可以看作是这种设置的实例。然而,多学习代理人的存在这些设置使得培训问题的非平稳常常导致不稳定的训练或不想要的最终结果。我们提出学习与对手的学习意识(萝拉),一种方法,原因的预期。其他代理的学习。罗拉学习规则包括一个额外的术语,解释了在预期的参数更新的代理政策其他药物。我们发现,利用似然比策略梯度更新的方法,可以有效地计算萝拉更新规则,使该方法适合于无模型强化学习。这
usual-GA
- 一个最常用的GA程序,可以以此为基础,扩展出很多版本的GAs-a GA the most commonly used procedure, could serve as the basis and expand the many versions of GAs
road_realize
- 属于智能规划里面的一个简单的机器人道路识别问题,代码使用c++语言实现-smart planning inside a simple robot road recognition, the use of code language c
priority-based-method-
- robocup rescue 机器人救援仿真参考论文 非预案方式下警力分配模型的研究与仿真(基于优先级的警察智能体的构建方法,周诚)-robocup rescue robot rescue simulation mode reference paper non-plan allocation model of police and Simulation (priority-based method of constructing the police agent, Zhou Cheng)
program
- 手写数字的识别的matlab实现,运用基本的图像处理和BP神经网络来实现,程序的使用方法请参阅 readme.txt-Handwritten digit recognition matlab realize, the use of basic image processing and BP neural network to achieve the program' s usage, please refer to the readme.txt
仿真大作业
- 模糊控制PID的simulink仿真模型(Simulink simulation model of fuzzy control PID)