搜索资源列表
2000190052
- 迭代函数能在计算机上呈现出有趣的分形图像,本文通过探讨迭代函数的特性,进而研究分形图像的形成方法,重点研究了三个典型分形图集:分支图、茹利亚集、芒德布罗集,然后论述了混沌和分形的关系,最后还分析了分形图像的应用前景。-IFS can on the computer showing interesting fractal image, the paper by exploring Iterated Function features, which studies fractal image for
2_16
- 递归分形树的形成,利用递归算法生成分叉树,将这个生成元在每一个层次上不断重画-Recursive fractal tree formation, the use of recursive algorithm to generate bifurcation tree, will the generator on at every level constantly re-draw
8
- 生成规则:以如图8-27n=2所示二叉树为基础,以每个分支为主树干,按照比例递归出另一个二叉树,如图8-27n=3所示。依此类推,便形成了疏密有致的分形树,称为Caley树-Generated rules: in Figure 8-27n = 2 as shown is based on binary tree to each branch of the main trunk, in accordance with the proportion of another recursive bina
duixing
- 有关于队形控制、间距、队形等等(主要是舰船的)研究报告-(Mainly ships) study on the formation control, spacing, formation, etc.
分形理论及其发展历程
- 本文讨论分形理论产生的发展历史,分形概念的形成,分形的算法等。(This paper discusses the development history of fractal theory, the formation of fractal concept and the algorithm of fractal.)
sierpinski
- 分形结构的基础,sierpinski曲线。体现了图形形成的迭代,调整结束可以看到图形形成过程(The basis of fractal structure, Sierpinski curve. It reflects the iteration of graphics formation. The process of graphics formation can be seen at the end of adjustment.)